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HEAT TRANSFER CHARACTERISTICS OF AN EMERGENT STRAND

By William Emile Simon, Larry Claude Witte,*
and Pat Garner Hedgcoxe*

Lyndon B. Johnson Space Center

SUMMARY

The results of an analysis of the heat transfer characteristics of a hot strand

emerging into a surrounding cooler fluid are presented. The analysis is for a stable

strand of constant efflux velocity, with a constant heat transfer coefficient on the lead-

ing surface and strand sides. A dimensionless governing equation is derived and solved

by Laplace transform methods. The equation provides a description of the variation of

temperature within the strand with axial distance and time. Following a discussion of

computational aspects of the solution, generalized results are presented for a wide

range of parameters. A discussion of the relationship of the generalized results and

experimental observations is given.

INTRODUCTION

When a hot emergent strand of an incompressible fluid or semisolid material pen-

etrates a cool liquid bath, heat is lost rapidly from the sides and leading edge of the

strand. If the strand is a hot molten material, explosive vapor formation may occur,

caused by fragmentation of the molten material (ref. 1). Conversely, the strand may

be of a metal or a fiber in its plastic deformation region, being extruded and quenched

simultaneously.

In the area of nuclear reactor safety, an over-temperature excursion within a

reactor can cause overheating of the fuel elements, possibly to the point of becoming

molten, while also generating fission gases and increasing the pressure level inside

the fuel elements. When this happens, the temperature of the cladding that surrounds

the fuel element rises, ultimately causing a cladding rupture that can result in the re-

lease of a high-temperature molten jet stream into the surrounding coolant. Film boil-

ing begins immediately on the exposed material and continues until the stream cools

sufficiently for the system to enter the transition and subsequent nucleate boiling re-

gimes. The violent nature of transition and nucleate boiling quickly overcomes the

surface tension forces holding the molten metal together and tears the molten mass

into smaller globules. The process sets off a thermal chain reaction because, as more

exposed surface area is provided as a result of disintegration, the heat transfer

* University of Houston, Houston, Texas.



increases, causing further disintegration by nucleate boiling. The fragmentation proc-
ess continues until, in some cases, the molten fluid is reduced to a very fine powder.
If the time to transition boiling can be predicted, information can be obtained on the
amount of energy released up to this point and on the delay times involved in the vapor
explosion process.

The transportation of liquefied natural gas (LNG) by large oceangoing vessels is
another application of the processes analyzed in this report. A leak in the hull of an
LNG vessel could allow seawater to penetrate the LNG. Because of the large tempera-
ture difference between the two fluids, the LNG would begin to boil off the sides of the
seawater stream, resulting in a phenomenon analogous to the analysis of this report.

Another application is in the metal-forming industry, in which it is often neces-
sary to form metal bars by means of an extrusion or, perhaps, a rolling process. A
closely related situation concerns a metal wire being drawn from a die, or a monofila-
ment fiber being drawn from a spinneret (melt spinning). As indicated in reference 2,
only in the recent past has melt spinning been the subject of fundamental research. If
the cooling behavior of a wire (or billet) being extruded could be predicted, it might be
possible to combine the metal-forming and the heat-treating processes into one.

The applications just described are the ones that provided the motivation for this
study. In these applications, a fundamental understanding of basic heat transfer within
the strand is essential. Many parameters govern the thermal performance of the strand.
In this report, a mathematical model is developed and the governing equation is derived
to describe the heat transfer characteristics of the strand. The governing equation is
then solved for the temperature within the strand as a function of axial distance and
time. Finally, a computer program is used to vary the parameters governing the heat
transfer process and to determine the degree of influence of each. (The applicability
of this analysis to emerging liquid strands or streams is very limited because, by as-
suming a stable strand geometry, the complex fluid dynamic interactions between the
strand and the surrounding cooler fluid are neglected.)

For this report, a stable, one-dimensional, circular strand of constant efflux
velocity is assumed, with a constant (average) heat transfer coefficient on the sides and
leading surface of the strand. However, the heat transfer coefficient on the end of the
strand need not be equal to that of the sides. For convenience, the cylindrical body is
referred to as a strand, whether it is a wire, billet, fiber, molten jet, or other form.

The approach to the heat transfer solution is similar to that of the classical fin
heat transfer analysis (ref. 3), but the problem is complicated by the fact that the strand
is in motion, while at the same time it is always physically connected to the fixed reser-
voir, resulting in a constantly changing geometry. Therefore, a departure from classi-
cal techniques is needed to arrive at a solution to this particular problem for the short
times of interest in some applications (e.g., the vapor explosion problem). For large
times, the solution is analogous to the well-known semi-infinite rod problem.

As an aid to the reader, where necessary the original units of measure have been
converted to the equivalent value in the Systime International d'Unitis (SI). The SI units
are written first, and the original units are written parenthetically thereafter.
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SYMBOLS

Bi Biot number, hr/k

Bi e  Biot number at the end, her/k

c specific heat of strand material

Fo Fourier modulus, aUT/r 2

Fo* time to steady state

h heat transfer coefficient on strand sides

k thermal conductivity of strand material

Pe Peclet number, rU/a

Pr Prandtl number, cp /k

qgen heat generated within elemental volume

qi heat entering elemental volume

qj heat lost from strand sides

qo heat leaving elemental volume

qs heat stored in elemental volume

q" local heat transfer rate per unit area

r strand radius

Re Reynolds number, rUp/A

s transform variable

s 1 , s 2  quadratic roots

T temperature

T reservoir temperature

T coolant temperature

3



U strand efflux velocity

u Heaviside unit function

x coordinate position, distance from the entrance

z function, defined in equation (B9)

a thermal diffusivity of strand material

y dimensional parameter, 2h/kr

71 dimensionless distance, /r

77* steady-state distance

e dimensionless temperature

p. absolute viscosity of strand material

Sposition coordinate, distance from the leading edge

p density of strand material

T time

FORMULATION OF THE ANALYTICAL MODEL

To begin the analysis, consideration first is given to the flow of a round axisym-
metric strand in the region of stable film boiling with constant efflux of the molten ma-
terial or strand. As opposed to the analysis of Schlichting (ref. 4) for a jet that mixes
with the surrounding fluid, in this analysis a stable jet or strand is assumed, with no
mixing of the strand material and the coolant. Neglecting leading-edge deformation
(ref. 5 is suggested as a starting point for analyzing the effects of velocity retardation
and deformation), the physical process can then be modeled by a blunt-edged strand of
radius r penetrating the coolant as shown in figure 1. A vapor film forms at the lead-
ing surface and continues toward the wall, completely engulfing the strand sides. At
any given position, the vapor film thickness will grow with time, always being thinnest
at the leading edge. Because the film boiling process greatly reduces skin friction at
the strand surface (refs. 6 and 7), velocity gradients within the molten material are
neglected. In addition, because of the high thermal conductivity of liquid metals and the
small radii of practical interest, radial temperature gradients within the strand are ne-
glected. In summary, the following assumptions are made concerning the problem:
a stable axisymmetric strand at constant velocity, radial temperature gradients ne-
glected, and constant heat transfer coefficient.

When a hot or molten strand emerges into a region of cool liquid, three factors
are of primary importance: the fluid-dynamic characteristics of the strand system;
the boiling of the coolant; and the cooling and solidification of the molten material. For
the case of a fiber or strand being drawn through a coolant medium, boiling may or may
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not be involved, and the cooling process is

simpler than that of the molten material be-

1 -cause no solidification is involved.

r rFor the molten strand problem, it is
Reservoir (To) A U assumed that, when the strand first emerges

from the opening, stable film boiling with
Cooling medium strong radiation effects occurs (ref. 8). As

C (T_1) the strand travels downstream, cooling as

it goes, it eventually reaches a temperature
Wall at which stable film boiling exists without

Regions: A molten material appreciable radiation effects. Further cool-

Svapor film (coolant vapor ing results in a region of partial nucleate
boiling and unstable film boiling. Next

Figure 1.- Emergent strand penetrating comes the nucleate boiling regime; if the

surrounding coolant. strand does not disintegrate, pure convec-
tion will follow. The various heat transfer
regimes are shown in figure 2 (ref. 9).
Experimental work concerning vapor explo-
sion indicates that under certain conditions
the molten material will disintegrate vio-

3.15 x106 106 lently somewhere in the region of nucleate
E boiling. The disintegration and subsequent

S D solidification process is very complicated.

.315 -- 10 - Disintegration produces a rapid increase
E in heat transfer area that increases the heat

A to B - pure convection flux, thus causing a self-propagating effect
.0315 - "104 B to C - nucleate boiling and hastening the heat transfer process even

Sto tranfilm boiling further. In addition to the various heat
transfer regimes, the velocity regions of

.00315 - 103 A laminar and turbulent flow are also impor-
1 10 o102 1 10 tant for both the molten material or fiber

AT, F and the cooler liquid (liquid and vapor
0.56 5.56 55.56 555.56 5555.56 regions).

AT, K

To determine the heat transfer coef-
Figure 2.- Boiling of water at 3730 K ficient governing the removal of heat from

(2120 F) on an electrically heated the surface of the strand, the equations of
platinum wire, showing various heat, mass, and momentum transfer must
boiling regimes, be accompanied by appropriate boundary

conditions for each heat transfer and veloc-

ity region, and further boundary conditions connecting the various regions must be sat-

isfied. If the heat transfer coefficient is known beforehand or if an average coefficient

is used, the analysis is concentrated on the heat transfer within the hot material, which

is the case for this report. More information on the calculation of the heat transfer

coefficient is given in appendix A. (Since the heat transfer coefficient is treated para-
metrically in the main body of this report, this appendix is therefore an independent

entity and can be considered entirely separate from the report. The purpose of appen-

dix A is to merely suggest one possible approach to the extremely difficult problem of

computing the heat transfer coefficient.)
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To derive the governing differential equation of the strand system, consider first
the elemental cross section of the strand shown in figure 3. In the general case, h is
the overall coefficient of heat transfer for convection, radiation, and film boiling. The
quantities qi and qo are those of heat transfer into and out of the elemental volume.

Heat stored within the element is denoted by qs; q, is the heat lost off the sides be-
cause of convection and so forth. It is assumed that the temperature of the surrounding
coolant To remains constant.

It is convenient to translate the coor-
dinate axes to a moving coordinate system
at the leading edge of the strand. This
translation is accomplished by means of the

- T - transformation

S=U - x (1)

where ( is the position coordinate, dis-
x+dx tance from the leading edge; U is jet ef-

flux velocity; T is time; and x is the
Figure 3. - Elemental volume of strand coordinate position, distance from the en-

showing energy balance. trance. At all times, 4 - 0. The moving
coordinate system is also shown in figure 1.
An elemental heat balance including heat

conducted into and out of the element, heat lost from the sides of the element, and net
heat accumulation by the element yields the basic equation

a2 e 1 ae
a 2  ae a (2)

where y = 2h/kr; a dimensional parameter; a is the thermal diffusivity of the strand
material; and the dimensionless temperature e is defined as

T-T
St( r)- T - T (3)

O0

where T is the temperature of the strand material and T is the reservoir
temperature. o
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For equation (2) to apply in both regions (outside the wall on the strand surface

and inside the reservoir), the Heaviside unit function u (ref. 10) is introduced.

O, r <-

u = U (4)
r 41, 7 -- U

UU

If the actual temperature gradient at the entrance is modified so that e = o  1

at ( = UT, then multiplying the heat transfer coefficient y in equation (2) by

u[a (T - )] results in the following modification of equation (2):

r

a2e L 1 1 a(5
=u [- 2_ (T ar (5)

In this formulation, when 5 - UT, heat is transferred from the sides at the rate y;

when > UT, no heat is allowed to flow from the sides of the strand within the reser-

voir (dotted lines in fig. 1).

In seeking a closed-form analytical solution, it is apparent that in the transformed

coordinate system, in which the position coordinate is always greater than or equal

to zero, the governing equation is particularly suited to the Laplace transform method

of solution. However, solution of equation (5) by the Laplace transform method leads

to a more complicated equation, and another approach is therefore taken.

The energy balance equation rewritten in its most general form is qi - o + qgen

qs + q, (where the heat generation term qgen is zero outside the wall). However,

inside the wall, because the term qf dictates that heat still is being lost from the sides

of the strand, an equal and opposite amount of heat must be generated within the strand

to replenish the heat lost. This'make-up quantity of heat can be expressed as

qgen = 2nrh d ~T°- T 1 - u - 1 (6)



because the strand is essentially at T inside the reservoir. The governing equation

for this physical model then becomes

e - y o  1 - u 7 - - (7)

2 a T o7)

where e (T O - T)/(T - To) = 1.

In reality, equation (7) is more physically correct than equation (5) because it allows

for a temperature gradient at the entrance. Outside the entrance, u(- - &-) = 1, and

equation (7) is identical to equation (5). However, within the entrance, where

u[- (- - &)] = 0, the two equations differ by the term y(e - eo); and, as becomes
r

large, T must approach T , in which case convection from the side vanishes, as
expected.

Equation (7) may be put in dimensionless form by the introduction of the following

variables: 7 = /r, Fo = aT/r 2 , Bi = hr/k, and Pe = rU/a = (rUp/p)(c p/k) = RePr

where 77 is the dimensionless distance, Fo is the Fourier modulus, Bi is the Biot
number, k is the thermal conductivity of the strand material, Pe is the Peclet num-
ber, p is the density of the strand material, tL is the viscosity of the strand material,
cp is the specific heat of the strand material, Re is the Reynolds number, and Pr is

the Prandtl number. Then, equation (7) becomes

a 2Bie - a- 2Bi l -u(Fo -Q] (8)
a-2 aFoPe

If equation (8) is applied to a solid wire or billet, the Peclet number representation is
meaningless. However, Pe is basically a nondimensionalized velocity rU/a.

Two boundary conditions and an initial condition are imposed as follows. Bound-

ary conditions: Fo > 0, = 0; a = Bi e, where Bi is the Blot number at the end;a7 e e
other boundary condition is 71 - -; e is bounded. Initial condition: Fo = 0, 71 = 0;
o = e0 = 1. With this formulation of the analytical model, attention is now directed

toward obtaining a solution for this system that will accurately predict the physical
phenomenon.

8



METHOD OF SOLUTION

If the Laplace transform of both sides of equation (8) is taken with respect to Fo

(denoting the transform £e by 0 = (,77, s), where s is the transform variable), the

result is a linear second-order ordinary differential equation in e and 77.

d (2-Bi + 2Bi 1 - exp 7 (9)de -l (9))j
dy

The complementary solution can be written as

c = A(s)exp ( Bi + s+ B(s)exp (-7Bi + s) (10)

where A(s) and B(s) are to be determined from boundary conditions. The particular

solution is

p = C1(s) + C 2(s)exp(-sq/Pe) (11)

The evaluation of the constants from the boundary conditions yields the general solution

of the transformed equation

-2Bi Bi

(7, s) = exp (- 4a +-B e

(B s - (2Bi + s

Be 1 2Bi exp -

e 1+ 1 () + 1+ (12)
s (Bie i + s s ) 2 - (2Bi +s)

This solution was verified by taking the appropriate derivatives and by substituting them

and equation (12) into equation (8). The inversion of equation (12) provides the general

solution for the strand system.

9



The inversion details are omitted for the sake of brevity. The details, although
representing a considerable portion of the effort in solving this problem, are generally
straightforward and are given in reference 11. The solution is lengthy and involves ex-
ponential and complementary error functions. It is written as

e (,Fo) = 1 - u(Fo - - 2BiPe exp(-2BiFo) Al + BiePeD)1 exp sFo [(Bie exp(- l)I

* erf( - 47) + (Bie 1 exp (1917) erfc +

Bi 1
- _sexp Bi e + Bie2Fo erfc ( + Bie )

2BiPe exp(-2BiFo) (B1 + BiePeE1 exp F 1

e +Bi 1

* exp (-77 erfc(I - 4 + exp2Bi

Serfc 1  r Bi e xp Bi 7 + Bi 2F erfc

2 4 - (' Bie 52 e e 2 2 .

+ Bie F) + 12BiPe2D1 exp s[ - 2Bi) (Fo - .1e)]

+ 2BiPe2E1 exp s2 - 2Bi) (Fo- -P u Fo -
1 2 - Pe)i _e)

where

A 1 (14)

Pe(Pe2 + 8Bi)

B 1 = -A 1  (15)

10



D 1 1 1 (16)

e(Pe2 + 8Bi) 2 Pe2 +pe(pe2 +8Bi)

E 1 1 (17)

- Pe2 + 8Bi [Pe2 - Pe Pe2 + 8Bi)

and where s1 and s2 are roots of a quadratic given by

12 4Bi + Pe 2) ± [4Bi + Pe 2 - 16Bi (18)1l,2  = - 4B i +

The ultimate check of correctness for the general solution was performed success-

fully by taking the appropriate partial derivatives from equation (13) and substituting
them into the governing differential equation (8).

APPLICATION OF THE SOLUTION

The solution, equation (13), yields a as a function of qj and Fo, with Bi, Bie'

and Pe as parameters. The Biot numbers Bi and Bie represent the ratio of internal

to external resistance to heat transfer and must be kept quite low if the neglect of radial

temperature gradients is to hold. For this investigation, Biot numbers were limited to

0. 1 or less.

Equation (13) is applicable for all times; however, as time (Fo) becomes large,
arguments in the solution become correspondingly large. If these terms are separated
from the overall solution and are designated for convenience e 2' then

12B1 ( Pe exp -71-

S2 2BiPeD1 exp 2BiFo + Bi P 2

1 Bi+ )

erfc + Pe exp- - 2Bi u Fo - (19)
So LPej1



The remainder of equation (13) would then be called e 1, so that e = e 1 + e2. This

grouping of terms eliminates complications caused by machine limitations at large
times. Generally, as Fo - -, the exponential functions involving Fo become larger.
It can be shown that for long times, approaching steady state, e 2 becomes of negli-

gible significance. A brief demonstration of this is given in appendix B.

Figure 4 shows the end temperature ratio of the strand e (0, Fo) for a Biot num-
-3

ber of 10 and for various Peclet numbers. The lower the Peclet number, the longer
the time required for the end to cool to essentially the coolant temperature. Initially,
this fact seems contrary to intuition; however, the effect of axial conduction is being
demonstrated here. Low Peclet numbers correspond to strands that move away from
the reservoir slowly. Axial conduction is effective in these cases, and the strand cools
more slowly. Figure 4 also shows that high Peclet numbers (Pe > 1) have little effect.
This situation corresponds to the case of a more rapidly moving strand where axial
conduction does not contribute so heavily.

For small metal jets or strands, the Peclet number is fairly high except for very
slow moving strands. Figures 5 and 6 show the cooling results for the leading edge for
two Biot numbers smaller than that of figure 4. When the leading edge approaches the
temperature of the coolant (9 = 0), no further cooling of the strand past that point occurs.
Essentially, figures 4, 5, and 6 yield the Fo at the time when the strand approaches a
steady-state condition. At this point, the temperature profiles in the strand undergo
no further change.

1.2 1.2

Pe 100

S Pe = 101 and 10 .8

Pe 10-3 Pe 10 -3

SP 0- 1 
P

i e e o Pe = C0Pe 10-2
.4 ~.4 Pe = 10

Pe = 102 and 10
e 10

100 101 102 103 104 105 100 101 102 103 104 10
5

Fo Fo

Figure 4. - Cooling of the end of the Figure 5.- Cooling of the end of the
-3 -2strand: Bi = 10 strand: Bi = 10.

12



1.0- Pe= 101 The time to steady state Fo* is
Pdetermined by

.8

e (, Fo, Bi, Pe) = e(0, Fo*, Bi, Pe) = 0

2 (20)
Z Pe 10

2 and 10(
4 Pe = 102

In actuality, e only approaches zero as-
.2- ymptotically; therefore, Fo* was deter-

Pe 10 mined as the time required for e to reach

a = 0. 01. Figure 7 shows the steady-state
10 10 10 102 103 0 time plotted with Bi as a parameter for a

Fo range of Pe that will encompass most situ-

ations of practical interest. The figure
Figure 6.- Cooling of the end of the shows that Fo* decreases with increasing

strand: Bi = 10- 1  Bi but increases with decreasing Pe for

Pe < 10. For Pe > 10, the Fo* is essen-
tially constant, indicating the same effect as
shown in figure 4 but in a slightly different

105 manner; that is, relatively large Pe has
a negligibly small effect on the cooling rate
of the strand. Clearly, the Bi could be a
function of Pe, but that interdependence was
not included in this investigation.

Ssi 10-3  However, the Pe does have a bearing
on the length of the strand when it reaches
a steady-state condition. The product

10 PeFo* gives the steady-state distance 77*

02 as the strand tip approaches the coolant
temperature. Figure 8 shows the variation
in steady-state length for a wide range of

10 - Pe. This figure illustrates that, if Bi and

B 1 Pe are known for a strand, the nondimen-
S10-1 sional 7* can be found easily.

10-2 -1 0 1 2 Figures 9, 10, and 11 show how the
10 P10 e temperature profiles develop as time pro-

ceeds for strands with Pe = 102. The dis-
Figure 7. - Time required to reach tance scale is normalized versus the length

steady state for low-Biot-number of the strand at a particular Fo. For ex-
strands. ample, in figure 9, the plots for Fo of

5 X10 , 5x 102 , and 103 arefor Fo<Fo*;

and the curve for Fo = 104 is for Fo > Fo*.

13



10

104 _ 1.0

.9 Fo 5 x 10

.7

10- .6 - Fo= 5 x 102

3 Fo 104  Fo= 10

.1

0 .1 .2 .3 .4 .5 .6 .7 .8
101 - (/Pe Fo)

-2 1 0 2 Figure 9.- Development of temperature
10 10 10 101 10 -3 2Pe profile: Bi = 10 , Pe = 10

Figure 8. - Length of strand required
for steady state.

.9 .9

.8 .8
.7 Fo = 5 x 01.7

a .6 3 .6 -

..5 .4

Fo = 5 x 102  
1.3 .3 Fo 5x10

.2 Fo = 103  
.2

.1 Fo=5x102

0 .1 .2 .3 .4 .5 .6 .7 .8 0 .1 .2 .3 .4 .5 .6 .7 .8
I - ('/Pe Fo) I - (/Pe. Fo)

Figure 10.- Development of tempera- Figure 11.- Development of tempera-
ture profile: Bi = 10 2 , Pe = 102  ture profile: Bi = 10- 1 , Pe = 102

The test of any theoretical result is a comparison with experimental results.
Acierno et al. (ref. 2) have obtained temperature profiles for polyethylene fibers at
4530 to 4730 K (1800 to 2000 C) being pulled from an extruder into stagnant air at
2930 to 2980 K (200 to 250 C). The conditions for this test do not exactly match those
of the theory developed in this report; for example, the strand was being extended and
the diameter decreased as the extension took place. Therefore, the velocity and diam-
eter of the strand are functions of the distance from the spinneret. Another difference
is possibly due to the variation in thermal conductivity in the radial direction as a result

14



of radial temperature gradients. Even with these differences, axial temperature distri-
butions computed from the theory of this report show an excellent comparison in shape
with those measured by Acierno, indicating that the theory is correct, at least in its
dependence on basic parameters of the system.

Bradley (ref. 12) undertook a companion experimental study to this theoretical
study. He studied the cooling characteristics of a 0. 159-cm-diameter (1/16-inch-
diameter) molten metal jet in distilled water. The effects of drag caused the jet to be
slowed as it penetrated into the liquid, resulting in considerable waviness in the jet.
Direct temperature measurements along the jet could not be obtained, but in some
cases behavior was observed that compares well with the theoretical results of this
analysis. Bradley noted that solidification of the jet occurred at a fixed axial location
from the injection nozzle, after the jet had penetrated the cooling bath considerably.
Under similar conditions, the theory of this investigation predicts that the temperature
at which solidification would begin is reached at a constant axial distance from the
reservoir.

Data that could be.compared directly to the theory were not found. Complete veri-
fication of the theoretical formulation must await such results. Meanwhile, work is
being conducted to obtain data by means of an apparatus involving the passage of a solid
wire through a cooling region.

CONCLUDING REMARKS

of A mathematical model was developed to describe the heat transfer characteristics
of a hot jet or strand emerging into a surrounding coolant. A closed-form analytical
solution of the governing partial differential equation was obtained for a circular strand
of constant efflux velocity and constant (average) heat transfer coefficient on its sides.
Using this model, the various parameters governing the thermal behavior of the strand
were investigated. Although a limited comparison with experimental data was made,
more experimental data are needed with which to compare the theory.

The complexity of determining an adequate heat transfer coefficient on the strand

was illustrated by a simplified analysis consisting of an extension of previous work to

include several effects that would be present in most applications of interest. In the

model, it was necessary to use an average heat transfer coefficient. The effects of

variations in this coefficient were investigated parametrically. For a specific physical

application, an initial average heat transfer coefficient can be computed, and this aver-

age coefficient can then be used in the model to determine the thermal performance of

the strand. With this information, the computation for the heat transfer coefficient can

be refined. This procedure can be repeated as many times as necessary until a suffi-

ciently accurate average overall heat transfer coefficient for the strand system is

obtained.

The principal limitations of the analysis are summarized as follows. For the

case of a freely moving strand, the assumption of a stable axisymmetric strand at con-

stant velocity does not provide for velocity retardation or deformation of strand mate-

rial as it penetrates the coolant. This limitation is not applicable in the case of a fiber

or strand being pulled through the coolant at a constant velocity. These effects perhaps
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would not be significant for the small times of interest for fast-cooling small strands
because stable film boiling would soon give way to transition and subsequent nucleate
boiling, which is beyond the realm of this report. However, if the temperature at
which transition occurs is known, then the solution will provide a prediction for the
time required for a strand to experience transition. The neglection of a radial tempera-
ture gradient within the strand has the effect of limiting the application to materials of
high thermal conductivity or to strands of small radius. The assumption of a constant
average heat transfer coefficient necessarily implies that an accurate value of this co-
efficient be computed, and this computation is the one that most severely limits the
analysis for any given application.

Therefore, areas of further study should concentrate on striving to eliminate the
previously mentioned limitations so that the scope of application of this effort may be
widened. The inclusion of a radial temperature gradient within the strand leads to the
consideration of Bessel functions. It would allow for more accurate analysis of strands
with large radii. Further work is needed in the area of determining the heat transfer
coefficient for this geometry. The uniform-temperature assumption presents a signif-
icant limitation, and much work is needed here, both experimental and analytical. In
particular, hydrodynamic aspects and their effect on the heat transfer process should
be investigated in greater detail. The effects of velocity retardation and deformation
should be studied. Perhaps such a study could lead to deformation predictions and to
the determination of a time-varying heat transfer coefficient at the leading edge.

Lyndon B. Johnson Space Center
National Aeronautics and Space Administration

Houston, Texas, December 10, 1973
981-10-00-00-72
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APPENDIX A

DETERMINATION OF HEAT TRANSFER COEFFICIENT

In this appendix, a simplified analytical approach directed at calculating an aver-

age heat transfer coefficient for forced-convection film boiling on the strand sides is

presented. Although some of the same symbols that were used in the text will be used

in this appendix, many of the meanings are different.

SYMBOLS

c specific heat at constant pressure
p

F dimensionless liquid stream function, defined in equation (A14)

f dimensionless vapor stream function, defined in equation (All)

h overall local heat transfer coefficient, q"/(Tw - To)

hfg latent heat of vaporization

h local radiation heat transfer coefficient, defined in equation (A22)
r

k thermal conductivity of vapor

in mass flow rate at interface

Nu overall local Nusselt number, hx/k

Nu radiation Nusselt number
r

Pr Prandtl number, c p-/k

q"c conduction heat transfer

q"r radiation heat transfer

Re Reynolds number, Ux/vL

T static temperature

17



Tsat  coolant saturation temperature

T wall temperature

Too free-stream temperature

U free-stream velocity

u velocity component in x direction

v velocity component in y direction

x position coordinate

y position coordinate

3 parameter for subcooled boiling, defined in equation (A43)

6 vapor film thickness

E L thermal emissivity of liquid coolant

Sw thermal emissivity of strand material

77 vapor similarity variable, defined in equation (A10)

B76 dimensionless vapor film thickness

e dimensionless temperature for vapor, defined in equation (A12)

SL dimensionless temperature for liquid, defined in equation (A33)

K thermal diffusivity

X* modified latent heat, defined in -equation (A23)

/ absolute viscosity

kinematic viscosity

Sliquid similarity variable, defined in equation (A13)

P density

IP stream function for vapor

IPL stream function for liquid
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HEAT TRANSFER COEFFICIENT

Althoulgh a constant (average) heat transfer coefficient (which is treated paramet-
rically) is used in obtaining the solution of the governing heat transfer equation (18) of
the strand system, the overall coefficient of heat transfer on the sides of the jet is, in
general, a complex function of the thermodynamics and hydrodynamics of the flow sys-
tem with its associated boundary-layer interactions. Other factors that complicate the
analysis are radiation effects and subcooled boiling.

An analysis to determine heat transfer and friction characteristics during forced-
convection film boiling on a flat plate, neglecting radiation and subcooling effects, was
performed by Cess and Sparrow (ref. 7), and their approach is used in the analysis of
this appendix; however, unlike the former study, this analysis includes the effects of
radiation and subcooled boiling. In applying the flat-plate results to the sides of the jet,
the effects of curvature are ignored. The work of Okabe (ref. 13) shows that the incom-
pressible laminar boundary-layer flow along a two-dimensional flat plate is substantially
similar to that of axial flow along a circular cylinder near the leading edge, where the
ratio of boundary-layer thickness to strand radius is small. Conceptually, the cylindri-
cal surface of the jet is approximated by incremental surface elements such as sec-
tion AA in figure A-1(a). Figure A-l(b) illustrates the growth of the liquid and vapor
boundary layers beginning at the leading edge of the surface element, and also shows
the two-dimensional rectangular coordinate system used in the boundary-layer analysis.

So that the governing equations will be analytically tractable, the following as-
sumptions are needed:

1. A stable vapor film exists, with
all generated vapor remaining in the film.
Also, no interfacial waviness or film in-

Entrance region stabilities are present.

2. The flow is steady, with negligible
gravitational forces.

Section AA
(elemental flat plate) U.T

Vapor film -U

U Tw Section AA
Leading edge of strand of figure A-l(a)

(a) Oblique view of emergent strand, (b) Analytical model for boundary-layer
illustrating applicability of flat- analysis, showing free-stream
plate analysis to an axial sur- velocity U relative to emerging
face element. flat-plate element of strand.

Figure A-1. - Physical model for calculating heat transfer coefficient on strand sides.
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3. The plate surface temperature is uniform. Therefore, the determination of
the heat transfer coefficient must be based on an average strand surface temperature,
which is not accurately known. This implies an iterative process for obtaining a refined
value of the overall heat transfer coefficient.

4. A constant-property vapor is assumed, or a variable-property vapor charac-
terized by pp = constant, Pk = constant, and Pr = constant (where p is density, Ii

is absolute viscosity, k is the thermal conductivity of vapor, and Pr is the Prandtl
number).

5. Inertia forces and energy convection within the vapor film are neglected, and
a linear velocity profile is assumed in the vapor layer.

6. The density-viscosity product in the vapor layer is very much smaller than

that in the liquid layer; that is, (P/) << (Pj) L

7. Regarding radiation effects, the vapor layer is assumed to be a nonpartici-
pating gas; that is, absorption and emission within the vapor layer are neglected. This
assumption is based on the work of Sparrow (ref. 14) for film boiling in free convection
on a vertical flat plate, in which it is concluded that the effects of a radiatively partici-
pating vapor on heat transfer are negligible within the parameter range investigated,
which includes steam at pressures at least as great as 10 atmospheres.

Because the derivation of the equations is quite lengthy, only a general discussion of
the analysis is presented here. More detailed information on the method used is avail-
able in the cited references.

The analysis is begun by first considering the coolant fluid to be a saturated liquid.
The effects of subcooling are incorporated later. In laminar flow, the governing equa-
tions are those of continuity, momentum, and energy. They are expressed as

au av
- + = 0 (Al)
ax 3y

au au au
u + v = v (A2)

ay

aT aT a2T
u + v = K2 (A3)

ay

lIn this appendix, variables without subscripts refer to the vapor, and the sub-
script L is used for the liquid.
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where u is the velocity of fluid in the x direction, v is the velocity of fluid in the
y direction, x and y are position coordinates, v is the kinematic viscosity, T is
the static temperature, and K is the thermal diffusivity. Although equations (Al),
(A2), and (A3) apply to both the liquid and vapor, equation (A3) is not used for the liquid
coolant in the preliminary formulation because the temperature in the liquid is assumed
to be everywhere constant and equal to the saturation temperature. As written here,
the governing equations represent a constant-property vapor. However, as shown in
reference 7, for a variable-property vapor adhering to the relations ph = constant,
pk = constant, and Pr = constant, the final heat transfer and skin friction results are
identical to those predicted by the constant-property analysis.

For continuity at the liquid-vapor interface (y = 6, where 6 is the vapor film
thickness), the tangential velocities, tangential shears, and mass flows that cross the
interface are equated for the liquid and vapor.

Tangential velocity: uL = u (A4)

Tangential shear: AL L = ( (A5)

Mass flow crossing interface: PLu - L = pu - v) (A6)

For temperature continuity at the interface, the vapor temperature at the interface must
be equal to the liquid temperature; that is,

T = Too at y = 6 (A7)

where To is the free-stream temperature.

Other boundary conditions needed are the conventional ones that apply at the wall and
in the free stream.

At y =o, u =v =o and T = T (A8)

As y- o, u-U (A9)

where Tw is the wall temperature, and U is the free-stream velocity.

21



Then, as in reference 7, boundary-layer similarity transformations are intro-

duced, first for the vapor layer in which

} 2 Y(A1O)

f(77) (All)

T-Too
(77) T - T (A12)

w oo

where q is the vapor similarity variable, f is the dimensionless vapor stream func-
tion, 4/ is the stream function, and e is the dimensionless temperature. Then, for
the liquid layer,

S -2 (A13)

F( ) L (A14)
_VL U x

where is the liquid similarity variable, F is the dimensionless liquid stream func-
tion, and 1L is the stream function.

The similarity parameters are used to transform the governing partial differential
equations into the following ordinary differential equations (ref. 15).

f'" + ff" = 0 (A15)

e" + (Pr)fe' = 0 (A16)

F"' + FF" = 0 (A17)

where the primes denote differentiation with respect to i7 in equations (A15) and (A16),
and with respect to in equation (A17).
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Next, transformation of the boundary conditions, equations (A4) to (A9), results
in the following conditions, first at the heated surface

f(O) = f'(O) = 0 and e (0) = 1 (A18)

then at the liquid-vapor interface

F(0) = ; F'() = f' i
(A19)

F"(o) = P/L 1/ 2  = 0

where 77, is the dimensionless vapor film thickness, and finally in the free stream

F' - 2 as -oo (A20)

Equations (A15) to (A20) form the complete set of governing equations for the trans-
formed problem. Knowing the fluid properties, the three unknowns f, F, and e can
be obtained by solution of equations (A15) to (A17) if something is known about 776. This

information is obtained by writing an energy balance at the interface. At this point, a
departure from the approach of Cess and Sparrow (ref. 7) is necessary in order to in-
clude radiation effects. When the sum of the conduction and radiation terms at the
interface is equated to the heat required to evaporate the liquid, the energy balance
becomes

aT-k- + h (T w - Ts t ) = hX* (A21)ay r( w sat)

where h r is the local radiation heat transfer coefficient, Tsat is the coolant satura-

tion temperature, ih is the mass flow rate at the interface, and X* is the modified
latent heat. In equation (A21),

4 4
T -Tsat _ Lw

hr w s (A22)
Tw - Tsat L +  Ew L- Lw
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and

X0. hfg [ .84 c T -sat
fg + hfg * Pr (A23)

where EL is.the thermal emissivity of the liquid coolant, Ew is the thermal emissivity

of the strand material, hfg is the latent heat of evaporation, and cp is the specific

heat at constant pressure.

The radiation heat transfer coefficient (eq. (A22)) takes the stated form with the
assumption that the vapor layer is very thin; and because of this, the radiant interchange
between a surface element and the liquid occurs between locations that are essentially op-
posite one another. For this reason, the nonparallelism of the surface and the inter-
face will not affect the local radiant heat transfer, and, if curvature of the strand sides
is neglected, then the configuration factor for two parallel planes can be used.

The X* as defined in equation (A23) is used in equation (A21) because it has been
shown (ref. .14) that the effects of the vapor inertia forces and of superheating essen-
tially can be eliminated from the problem by defining such a modified latent heat of
vaporization in terms of the actual latent heat hf , the temperature difference
T - T sat' and the vapor properties.

Transforming the right side of equation (A6) for in into the new variables and
evaluating the gradient at the interface, equation (A21) becomes

C pAT) [ (Pr)f (7) (Re)/2 (A24)

2Nur 1/2 e - (Re)1/2

where Re is the Reynolds number, and Nu is the overall local Nusselt number. The
parameter 716 is thus replaced by the dimensionless parameter c pAT/X*, which is a

function only of physical properties and of the temperature difference AT = T - Tw sat'

According to Cess and Sparrow (ref. 7), certain simplifications can be made at
this point that permit an easy yet accurate solution for the range of parameters en-
countered in the applications of interest for this investigation. The first simplification
is to neglect inertia forces and energy convection within the vapor film. This results
in simplification of equations (A15) and (A16) to

f"' =0 and e1"=0 (A25)
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the solutions of which, together with the boundary conditions at the interface and plate
surface, allow the determination of f(r76) and e '(r6), from which equation (A24)
becomes

1 F' 2 (0) 1/2

cpAT (P)L F"= (R e )  (A26)
Pr2Nu [ ]1/2 F"(0) 1/2

2 r L-LJ -7 (Re)

Equation (A26) reduces to Cess and Sparrow's (ref. 7) equation (18) when radiation ef-
fects are negligible, with the exception that the modified latent heat X* is used instead
of hfg.

The velocity problem in the liquid is identical to that solved by Cess and Sparrow
(ref. 7) with the aid of assumption 6 mentioned previously; therefore, it need not be re-
peated here. The method of solution relies on the adaptation of the Emmons-Leigh
table of solutions (ref. 16) for the problem of blowing or suction normal to a flat plate.
(See reference 7.) Several values for the derivatives F'(0) and F"(O) are shown in
table A-I for use in equation (A26) and subsequently.

TABLE A-I. - VALUES OF DERIVATIVES AND RELATED FUNCTIONS

USED IN THE VELOCITY PROBLEM FOR THE LIQUID

F'2(0) F"(0)
F'() F"(O)

0.000 1.328 0

.491 1.218 .198 2.48

.668 1.135 .393 1.70

.787 1.067 .580 1.36

.877 1.011 .761 1.15

1.005 .926 1.091 .921

1.117 .842 1.482 .754

1.175 .799 1.728 .680

1.20 .787 1.830 .656

1.30 .700 2.414 .539

1.40 .612 3.203 .437

1.50 .519 4.335 .346

1.60 .423 6.052 .264

1.70 .322 8.975 .189

1.80 .218 14.863 .121

1.90 .111 32.523 .0584

1.92 .0904 40.779 .0471

1.94 .0678 55.510 .0349

1.96 .0451 85.180 .0230

1.98 .0226 173.469 .0114

2.00 .00 .00
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The local heat transfer from the strand sides is that caused by conduction (q"c)
through the vapor film and by radiation (q" ) from the surface, and the local heat trans-

fer rate per unit area (q") can be expressed as

q = q + q r

kU )L F"(0)= z AT F(O) + h AT (A27)

where the conduction term is that derived by Cess and Sparrow, and the radiation coef-
ficient is as defined in equation (A22). The overall local heat transfer coefficient h is
defined as

h =-q (A28)

Therefore, division of both sides of equation (A27) by AT yields the desired expres-
sion for h.

r(P 1 1/2

h YL P J F' + hr (A29)

Using the definitions from the nomenclature for the combined radiation-conduction
Nusselt number, the radiation Nusselt number Nur, and the Reynolds number, an ex-
pression is obtained for the Nusselt number caused by combined radiation-conduction.

(Re) 1/ 2 T i -) +(Re)1/2 (A30)

Then, if equation (A26) is rearranged into the same dimensionless parameters as equa-
tion (A30)

cT 111 F'2(0)

r F (0)]

LIJ L-- -j = r2(Nu) (A31)

(Re) L1 2 OL' )-
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Equations (A30) and (A31) can then be used in conjunction with table A-I to produce the

plot of figure A-2, in which the influence of radiation is indicated. When radiation ef-

fects are negligible, the bottom curve shown is identical to that obtained by Cess and

Sparrow.

The analysis will now be extended to

include subcooled boiling. Where previously
(Re/2 it had been assumed that the coolant liquid

(Re1/2 was saturated throughout (that is, Too = Tsat),
2.0sat
1.0 it must now be specified that To < Tsat'

0.5 but at y = 6 for any x, T(x, 6 )= Tsat.

An additional equation, the energy equation

0.1 for the liquid, is needed.

ay
.01 -u -+ v - KL  (A32)

I l i l l I I I II I I I I I I 1 I I

.0011 10 1oo 1000 10000 By defining the dimensionless parameter

( A TPr) IP#FL

T-T

Figure A-2.- Effect of radiation on (A33)
overall heat transfer. L Tsat - Too

where e L is the dimensionless temperature, and by recalling the previous parameters

for the liquid layer

-- 2 (A13)

F(t)- L (A14)

on taking appropriate derivatives, equation (A32) is transformed into the following ordi-

nary differential equation

d2e de

2 (Pr)LF() = 0 (4 - 0) (A34)
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or

eL" + (Pr)LFeL' = 0 (-0) (A35)

where the primes denote differentiation with respect to . The necessary boundary
conditions are for any x

e L(0) = 1 (A36)

and

lim eL(y) = 0 (A37)
y-00

Cess and Sparrow (ref. 17) have developed special relations for the temperature
gradient at the edge of the boundary layer for three liquid Prandtl number regions.

9 L'(0) = -2 (low liquid Prandtl number) (A38)

'(0) = F(0) (liquid Prandtl number unity) (A39)

2(Pr) F'(0)
e L'(0)= - rL (high liquid Prandtl number) (A40)

If an energy balance is written at the liquid-vapor interface (y = 6 or = 0), it can be
reasoned that the energy convected by the vapor and radiated from the jet surface goes
into coolant evaporation and energy convected by the liquid at the interface; thus

-k + hr(Tw - Tsat) = fh* - k ay/T (A41)
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If the gradients in the liquid and vapor layers are evaluated at the interface in terms of
the transform variables, equation (A41) becomes

1 F'2 (0)

p[ AT= 2 (A42)

(Re)i 2( + F'(L0) + L

where 3 is a parameter for subcooled boiling and is defined as

c AT
S(Pr) ICpL (A43)

where

A Tsat - To (A44)

Equation (A42) is used in conjunction with equations (A38), (A39) or (A40), and equa-
tion (A30). Equation (A30) is still valid because heat is transferred from the strand
surface both by vapor convection and by radiation, irrespective of subcooled boiling.
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APPENDIX B

SOLUTION S IMPLI FI CATI ON FOR LARGE TIMES

It can be easily shown that

- 2Bi

Then equation (19) of the text can be written, using equation (B1), as

e2= 2BiPeD 1 exp [s 1 - 2Bi)(Fo - -L)] Iu (Fo - Pe

1 Bie + i 2

It also can be shown that

2BiPe + Bie ) = 2BiPe 2  

(B3)
Bie + 1

and because

erfc(-x) = 2 - erfc(x) (B4)

equation (B2) may be written as

2=2BiPe2D exp 1 - 2Bi) (Fo - erfc 7 sFo+u Fo 2e 1]

(B5)
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In the region of interest, that is, where 17 < PeFo,

u(Fo - 7/Pe) - 1 = 0 (B6)

and presents no problem. The remaining part of equation (B5) as Fo - - now must
be examined. First, the square of the complementary error function argument is con-
sidered; that is,

2 (s1 2BiFo - l-)+ + 2BiFO) (B7)

where equation (Bl) is used again. It is possible to write

exps 1 - 2Bi)(Fo - = exp(2BiFo + exp [(jFo 2 (B8)

If

z = - (B9)

then equation (B5) may be written as

S2BiPe2D1 exp [ 2BiFo + 0)I exp (z2 erfc(z)+ u(Fo- - 12 1 2 -1. Pe)

(B10)

As Fo - ro, z - -. Reference 18 shows that

2 1 - exp(z2)erfc(z) < 2 1 (B11)
732 14

+ +
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Clearly, as z - o, the bounding expressions for exp(z )erfc(z) approach zero. Con-
sequently, for long times (large Fo), e2 - 0 and a = e 1 only. For cases in which

the jet or strand (in this case, probably a bar, wire, or fiber) is issuing continuously
into the cooling region, only this portion of the solution need be used.
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